Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

Lithium phosphoenolpyruvate monohydrate at 85 K

Tomasz Zych, ${ }^{\text {a }}$ Ilona Turowska-Tyrk ${ }^{\text {a }}$ and Tadeusz Lis ${ }^{\text {b }}$

${ }^{\text {a D Department of Chemistry, Wrocław University of Technology, } 27 \text { Wybrzeże }}$
Wyspiańskiego, 50-370 Wrocław, Poland, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
Correspondence e-mail: ilona@kchf.ch.pwr.wroc.pl
Received 21 March 2000
Accepted 25 April 2000
The crystal structure of the title compound, lithium (1-carboxyethenyloxy)phosphonate monohydrate, $\mathrm{Li}^{+} \cdot \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{P}^{-}$.$\mathrm{H}_{2} \mathrm{O}$, is governed by lithium-oxygen interactions and hydrogen bonds. The Li^{+}cation is tetrahedrally coordinated by phosphate and water O atoms. The phosphoenolpyruvate monoanions form carboxyl-to-carboxyl and phosphate-towater hydrogen bonds.

Comment

The phosphoenolpyruvate (PEP) plays an important biological role (Stryer, 1995). The geometrical details of PEP derivatives, as well as the effect of the protonation level and chemical environment on the PEP geometry, have been discussed previously by Weichsel \& Lis (1994) and Souhassou et al. (1996). We performed the X-ray structure determination of lithium phosphoenolpyruvate monohydrate, LiPEP• $\mathrm{H}_{2} \mathrm{O}$, (I), as part of diffraction studies of charge density in crystals of phosphoenolpyruvate derivatives.
Li^{+}

$\mathrm{H}_{2} \mathrm{O}$
(I)

The crystals of (I) are composed of tetracoordinated Li^{+} cations, phosphoenolpyruvate monoanions and water of hydration. An ORTEP-3 (Johnson et al., 1997) view of the PEP fragment in the title monoanion is presented in Fig. 1. The enolpyruvate fragment is nearly planar and the enolic $\mathrm{O} 4-\mathrm{C} 2$ bond exhibits partial double-bond character, as was also observed in other monoionized PEP systems (Weichsel \& Lis, 1994). The length of the 'high-energy' phosphate ester bond $\mathrm{P}-\mathrm{O} 4$ is 1.6200 (3) \AA, which is typical for monoionized PEP derivatives (Souhassou et al., 1996).

The phosphate and water O atoms form tetrahedral coordination around the Li^{+}cation. The $\mathrm{Li} \cdots \mathrm{O}$ contacts range from 1.900 (1) to 2.021 (1) A. Each O3 atom joins two centrosymmetrically related Li^{+}cations, forming in this way an $\mathrm{Li}_{2} \mathrm{O}_{2}$ unit. A short distance between the Li^{+}cations in the
four-membered ring [2.661 (2) \AA] is also observed in other lithium derivatives. Furthermore, the O 2 and O 3 atoms of the phosphate group bridge two other centrosymmetrically related Li atoms, forming an eight-membered ring with an $\mathrm{Li} \cdots \mathrm{Li}$ distance of $3.805(2) \AA$. In this way, the polymeric structure along the z axis is formed (Fig. 2).

Figure 1

An ORTEP-3 (Johnson et al., 1997) view of the PEP fragment with the atomic labelling scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. Displacement parameters of H atoms were artificially diminished for clarity.

The geometry of the hydrogen bonds is given in Table 2. Each carboxyl group participates in a hydrogen-bonded cyclic dimer around an inversion centre, creating in this way a twodimensional network. The phosphate $\mathrm{O} 1-\mathrm{H} 1$ group takes part in a bond with the O 7 water atom, and the H 71 water atom is utilized in bonding with the O 2 atom from an adjacent anion, forming cyclic centrosymmetric systems of hydrogen bonds, so generating a three-dimensional structure.

Figure 2
The packing diagram viewed down the x axis showing part of the (100) net.

Experimental

Lithium phosphoenolpyruvate was prepared by the reaction of phosphoenolpyruvic acid with lithium carbonate in an aqueous environment. Crystals were obtained by slow evaporation from water at 277 K and afterwards ball-shaped by the solvent.

Crystal data

$\mathrm{Li}^{+} \cdot \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{P}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=191.99$
Triclinic, $P \overline{1}$
$a=5.2281(7) \AA$
$b=5.5511(7) \AA$
$c=12.009(1) \AA$
$\alpha=94.59(1)^{\circ}$
$\beta=90.36(1)^{\circ}$
$\gamma=94.91(1)^{\circ}$
$V=346.10(7) \AA^{\circ}$
$Z=2$
$D_{x}=1.842 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 53
reflections
$\theta=7.5-17.0^{\circ}$
$\mu=0.392 \mathrm{~mm}^{-1}$
$T=85$ (2) K
Ball, colourless
$0.55 \times 0.55 \times 0.55 \mathrm{~mm}$

Data collection

Kuma KM-4 diffractometer
$\omega / 2 \theta$ scans
8521 measured reflections
8272 independent reflections
6788 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\max }=55.16^{\circ}$

$$
h=-12 \rightarrow 0
$$

$\omega / 2 \theta$ scans
$k=-12 \rightarrow 12$
8521 measured reflections
$l=-27 \rightarrow 27$
8272 independent reflections
3 standard reflections every 100 reflections intensity decay: 6.2%

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

P-O1	$1.5657(4)$	$\mathrm{C} 2-\mathrm{C} 1$	$1.4880(5)$
$\mathrm{P}-\mathrm{O} 2$	$1.4903(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.3327(5)$
$\mathrm{P}-\mathrm{O} 3$	$1.4916(3)$	$\mathrm{C} 1-\mathrm{O} 5$	$1.3085(5)$
$\mathrm{P}-\mathrm{O} 4$	$1.6200(3)$	$\mathrm{C} 1-\mathrm{O} 6$	$1.2292(5)$
$\mathrm{O} 4-\mathrm{C} 2$	$1.3685(5)$		
$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 2$	$108.51(2)$	$\mathrm{O} 4-\mathrm{C} 2-\mathrm{C} 1$	$110.68(3)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 3$	$111.59(2)$	$\mathrm{O} 4-\mathrm{C} 2-\mathrm{C} 3$	$127.08(3)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 4$	$104.28(2)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$122.22(3)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{O} 3$	$118.43(2)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 5$	$114.00(3)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{O} 4$	$103.19(2)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 6$	$121.40(3)$
$\mathrm{O} 3-\mathrm{P}-\mathrm{O} 4$	$109.63(2)$	$\mathrm{O} 5-\mathrm{C} 1-\mathrm{O} 6$	$124.59(4)$
$\mathrm{P}-\mathrm{O} 4-\mathrm{C} 2$	$124.28(3)$		
			$173.81(3)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 4-\mathrm{C} 2$	$-74.39(3)$	$\mathrm{O} 4-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 5$	$-7.11(5)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{O} 4-\mathrm{C} 2$	$172.28(3)$	$\mathrm{O} 4-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 6$	$-7.91(6)$
$\mathrm{O} 3-\mathrm{P}-\mathrm{O} 4-\mathrm{C} 2$	$45.21(4)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 5$	$171.17(4)$
$\mathrm{P}-\mathrm{O} 4-\mathrm{C} 2-\mathrm{C} 1$	$-158.78(3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 6$	
$\mathrm{P}-\mathrm{O} 4-\mathrm{C} 2-\mathrm{C} 3$	$23.04(6)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\text {i }}$	0.85 (1)	1.78 (1)	2.634 (1)	177 (1)
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 7^{\text {ii }}$	0.89 (2)	1.78 (2)	2.655 (1)	171 (1)
$\mathrm{O} 7-\mathrm{H} 71 \cdots \mathrm{O} 2^{\text {iii }}$	0.87 (1)	1.84 (1)	2.699 (1)	172 (1)

Symmetry codes: (i) $-1-x, 1-y,-z$; (ii) $1-x, 2-y, 1-z$; (iii) $1-x, 1-y, 1-z$.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$

$$
w R\left(F^{2}\right)=0.079
$$

$$
S=1.20
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0444 P)^{2}\right. \\
& \quad+0.0319 P] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.058 \\
& \Delta \rho_{\max }=0.72 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.78 \mathrm{e}^{-3}
\end{aligned}
$$

8272 reflections
133 parameters All H -atom parameters refined

The refined $\mathrm{C}-\mathrm{H}$ distances are 0.919 (13) and 0.983 (13) \AA.
Data collection: Kuma KM-4 Software (Kuma Diffraction, 1989); cell refinement: Kuma KM-4 Software; data reduction: Kuma KM-4 Software; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEP-3 (Johnson et al., 1997); software used to prepare material for publication: SHELXL93.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1096). Services for accessing these data are described at the back of the journal.

References

Johnson, C. K., Burnett, M. N. \& Farrugia, L. J. (1997). ORTEP-3 for Windows. University of Glasgow, Scotland.
Kuma (1989). Kuma KM-4 Software. Version 3.1. Kuma Diffraction, Wrocław, Poland.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany.
Souhassou, M., Schaber, P. M. \& Blessing, R. H. (1996). Acta Cryst. B52, 865875.

Stryer, L. (1995). Biochemistry, 4th ed. New York: W. H. Freeman and Company.
Weichsel, A. \& Lis, T. (1994). Pol. J. Chem. 68, 2079-2096.

